

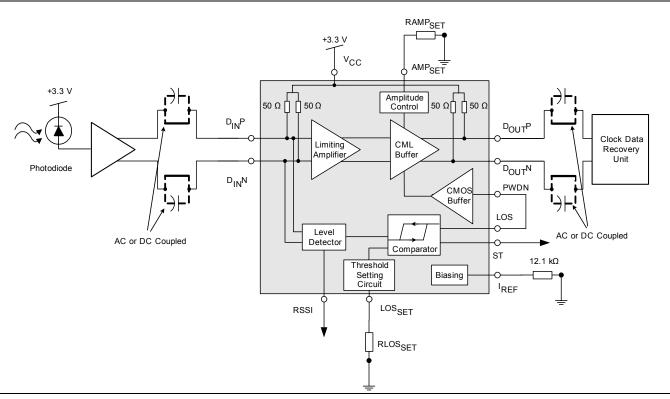
M02140

Low Power 3.3 Volt Limiting Amplifier For Applications to 12.5 Gbps Low Power 3.3 Volt Limiting Amplifier

The M02140 is an integrated high-gain limiting amplifier intended for high-speed fiber optic based communications. Placed following the photodetector and transimpedance amplifier, the limiting amplifier provides the necessary gain to ensure full CML output swing even at its minimum input sensitivity.

Capable of operating over a very wide frequency range, the M02140 supports data and telecom applications up to 12.5 Gbps.

The M02140 includes an analog RSSI output and a programmable signal level detector allowing the user to set the threshold at which the loss of signal logic output is enabled.

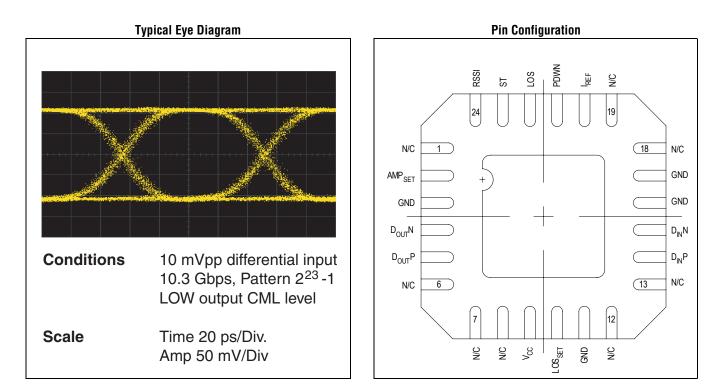

Applications

- STM-64/OC-192 SDH/SONET
- SDH/SONET with single or double FEC
- 10G Ethernet
- 10G Fiber Channel

Features

- M02140 wide dynamic range with typical 5.5 mV input sensitivity at 10.3 Gbps
- Received Signal Strength Indicator (RSSI)
- Programmable input signal level detect
- Fully differential
- CML data outputs with typical 23 ps rise and fall time
- Wide -40 to +85 °C operating temperature range
- Operates with +3.3 V supply
- Supply current typically 54 mA
- Programmable output amplitude (default 400 mVpp differential)
- On-chip DC offset cancellation circuit, no external capacitors needed

Typical Applications Diagram


Ordering Information

Part Number	Package	Operating Temperature
M02140-xx	24 pin MLF package	–40 °C to 85 °C

Note: xx represents the revision number. Please contact your local sales office for correct digits.

Revision History

Revision	Level	Date	ASIC Revision	Description
E	Preliminary	September 2004		Revised document layout.
D	Preliminary	June 2004		Update LOS specifications.
С	Preliminary	January 2004		Reformatted for new template.
В	Preliminary			
A	Preliminary			Initial Release.

1.1 Absolute Maximum Ratings

These are the absolute maximum ratings at or beyond which the IC can be expected to fail or be damaged. Reliable operation at these extremes for any length of time is not implied.

Symbol	Parameter	Rating	Units
V _{CC}	Power supply voltage (V _{CC} - GND)	-0.4 to +4.0	V
T _A	Operating ambient temperature	-40 to +85	°C
T _{STG}	Storage temperature	-65 to +150	°C
D _{OUT} P, D _{OUT} N	Output pins voltage	V_{CC} - 0.4 to V_{CC} + 0.4	V
D _{IN} P, D _{IN} N	Data input pins voltage	V_{CC} - 0.32 to V_{CC} + 0.32	V
AMP _{SET}	Output amplitude setting pin voltage	GND to +0.1	V
LOS _{SET}	Signal detect threshold setting pin voltage	GND to +3.6	V
PWDN	Output enable pin voltage	GND to +3.6	V
I _{REF}	Current into Reference input	+ 0 to -120	μA
RSSI	RSSI pin voltage	+1 to +3.6	V
I(ST)	Current into Status pin	+1500 to -100	μA
I(LOS)	Current into Loss Of Signal pin	+1500 to -100	μA

Table 1-1. Absolute Maximum Ratings

1.2 Recommended Operating Conditions

Table 1-2. Recommended Operating Conditions

Parameter	Rating	Units
Power supply (V _{CC} - GND)	3.3 ± 5%	V
Operating ambient temperature	-40 to +85	°C

Note: The package bottom must be adequately grounded to ensure correct thermal and electrical performance. It is recommended that a minimum of four vias be used with 0.3 to 0.33 mm diameter and 1.0 to 1.2 mm pitch to contact a ground plane.

1.3 DC Characteristics

 $(V_{CC} = +3.3V \pm 5\%, T_A = -40^{\circ}C$ to $+85^{\circ}C$, Outputs connected to a 50 Ω load to V_{CC} , unless otherwise noted). Typical values are at $V_{CC} = 3.3$ V and $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
I _{CC}	Supply current (I _{CC})	400 mVpp differential output amplitude	-	54	70	mA
100		800 mVpp differential output amplitude	-	61	75	mA
DataQuit	Circle and d OMI autout law	$\begin{array}{l} 400 \text{ mVpp differential output amplitude,} \\ \text{settled value, } (\text{R}_{\text{AMPSET}} = 0 \ \Omega, \\ \text{D}_{\text{IN}} \geq 20 \text{ mVpp}) \end{array}$	V _{CC} - 0.22	V _{CC} - 0.2	V _{CC} - 0.18	V
		$\begin{array}{l} 800 \text{ mVpp differential output amplitude,} \\ \text{settled value, } (\text{R}_{\text{AMPSET}} = 887 \ \Omega\text{,} \\ \text{D}_{\text{IN}} \geq 20 \text{ mVpp}) \end{array}$	V _{CC} - 0.44	V _{CC} - 0.4	V _{CC} - 0.36	V
DataOut _H Single-ended CML output high	$\begin{array}{l} 400 \text{ mVpp differential output amplitude,} \\ \text{settled value, } (R_{\text{AMPSET}} = 0 \ \Omega, \\ D_{\text{IN}} \geq 20 \text{ mVpp}) \end{array}$	V _{CC} - 0.02	-	V _{CC}	V	
DataOut _H Single-ended CML output high		$\begin{array}{l} 800 \text{ mVpp differential output amplitude,} \\ \text{settled value, } (R_{\text{AMPSET}} = 887 \ \Omega, \\ D_{\text{IN}} \geq 20 \text{ mVpp}) \end{array}$	V _{CC} - 0.04	-	V _{CC}	V
V _{IN(CM)}	Data input common mode voltage range	Input swing between $V_{\text{IN}(\text{MIN})}$ and $V_{\text{IN}(\text{MAX})}$ (see Table 1.4)	V _{CC} - 0.250	-	V _{CC}	V
R _{IN(DIFF)}	Data input differential resistance		85	100	115	Ω
Z _{OUT(DIFF)}	Data output differential impedance		85	100	115	Ω
V _{OH}	ST/LOS output HIGH voltage	4.7 k Ω to V _{CC}	2.4	_	-	V
V _{OL}	ST/LOS output LOW voltage	4.7 k Ω to V_{CC}		-	0.4	V
V _{IH}	PWDN input HIGH voltage		2.0	_	V _{CC}	V
V _{IL}	PWDN input LOW voltage		0	-	0.8	V

Table 1-3.DC Characteristics

1.4 AC Characteristics

 $(V_{CC} = +3.3V \pm 5\%, T_A = -40^{\circ}C$ to $+85^{\circ}C$, input bit rate = 10.3 Gbps, 2^{31} - 1 PRBS, unless otherwise noted).

Typical values are at V_{CC} = 3.3 V and T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
		BER <10 ⁻¹⁰ , differential input	-	5.5	7	mV _{PP}
	Input Sensitivity ^(1, 2, 3)	BER <10 ⁻¹⁰ , single-ended input	-	-	7	mV _{PP}
V _{IN(MIN)}		BER <10 ⁻¹² , differential input	-	6.5	8	mV _{PP}
		BER <10 ⁻¹² , 12.5 Gbps, differential input	-	9	_	mV _{PP}
V	(1 2)	BER <10 ⁻¹⁰ , differential input	1000	-	-	mV _{PP}
V _{IN(MAX)}	Input Overload ^(1, 2)	BER <10 ⁻¹⁰ , single-ended input	500	-	-	mV _{PP}
E _N	Input referred noise	Measured differentially	-	450		μV_{RMS}
RJ	Pandam litter	20 mV _{PP} differential input, alternating 1-0 pattern	-	0.8	1.2	ps _{RMS}
KJ	Random Jitter	12.5 Gbps, 20 mV _{PP} differential input, alternating 1-0 pattern	-	0.8	1.2	ps _{RMS}
	Deterministic Jitter (includes DCD)	20 mV _{PP} differential input	-	3.3	10	ps _{PP}
DJ		20 mV _{PP} differential input, 12.5 Gbps	-	3.7	12	ps _{PP}
DCD	Duty Cycle Distortion	Alternating 1-0 pattern at 2488 Mbps ⁽⁴⁾	-	1.3	5	ps
1. If	Data outputs rise and fall time	400 mVpp differential output amplitude, ($R_{AMPSET} = 0 \Omega$) ⁽⁵⁾	-	23	30	ps
tr, tf	(input > 20 mV _{PP} differential)	800 mVpp differential output amplitude, (R_{AMPSET} = 887 Ω) ⁽⁵⁾	_	28	40	ps
fL	Small signal -3 dB low frequency cut off	Excluding AC coupling capacitors	-	50	75	kHz
LOS _{TH}	LOS programmable threshold range	ld Differential input		-	100	mV _{PP}
V _{HYST}	LOS hysteresis	Electrical LOS threshold across programmable threshold range	2	4.5 ⁽⁶⁾	7.5	dB
ASSERT _{LOW}	Low Input R _{LOS} LOS Assert threshold	R_{LOS} = 4.99 kΩ, differential input	8	12.5	_	mV _{PP}
DEASSERT _{LOW}	Low Input R _{LOS} LOS De-Assert threshold	R_{LOS} = 4.99 kΩ, differential input	-	21	32	mV _{PP}
	I	I			1	I

Table 1-4.AC Characteristics

Table 1-4.AC Characteristics

Symbol Parameter		Conditions	Minimum	Typical	Maximum	Units
ASSERT _{MED}	Medium Input R _{LOS} LOS Assert threshold	R_{LOS} = 4.75 k Ω , differential input	16	25	-	mV _{PP}
DEASSERT _{MED}	Medium Input R _{LOS} LOS De- Assert threshold	R_{LOS} = 4.75 k Ω , differential input	_	41	65	mV _{PP}
ASSERT _{HI}	$\begin{array}{c} \text{ERT}_{\text{HI}} \\ \text{threshold} \end{array} \begin{array}{c} \text{High Input } R_{\text{LOS}} \text{ LOS Assert} \\ \text{threshold} \end{array} \begin{array}{c} R_{\text{LOS}} = 4.02 \text{ k}\Omega, \text{ differential input} \end{array}$		48	75	-	mV _{PP}
DEASSERT _{HI} High Input R _{LOS} LOS De-Assert threshold R _{LC}		R_{LOS} = 4.02 k Ω , differential input	_	125	190	mV _{PP}
T _{LOS_ON} Infer from LOS state until LOS is or small		LOS assert time after 1 Vpp input signal or smaller is turned off; LOS assert level set to 10 mV	_	13.5 ⁽⁷⁾	80	μs
Time from non-LOS state until LOS is de-asserted (ST asserted)LOS de-assert time after input crosses LOS de-assert level; LOS de-assert level set to 20 mV with applied input signal of 30 mVpp or greater		_	7 (8)	80	μs	

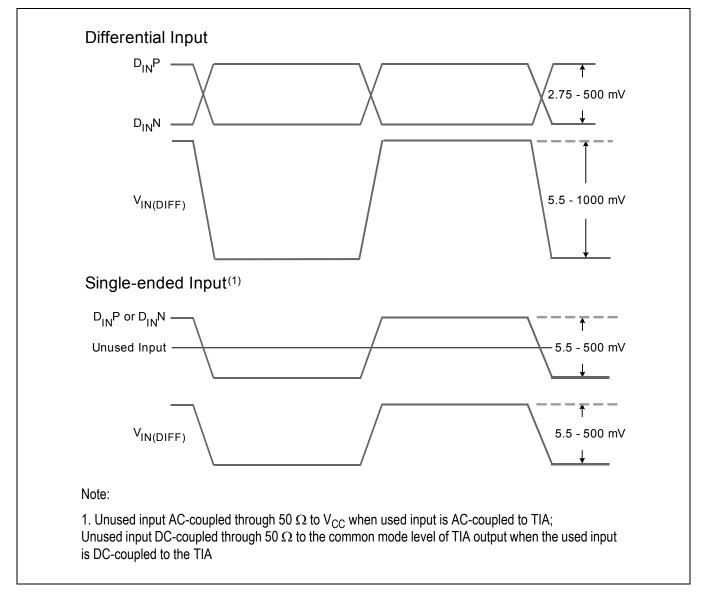
Notes:

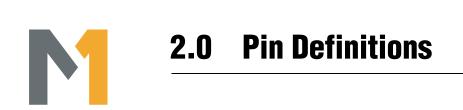
1. 5.5 - 1000 mVpp differential input translates to 2.75 - 500 mVpp for each single-ended input. See Figure 1-1.

2. When driven with a single-ended input, the unused input is DC-coupled through 50 Ω to the common mode level of the driven input. See Figure 1-1.

3. There is no difference in performance using a 2^{23} - 1 PRBS versus a 2^{31} - 1 PRBS.

4. Measured as [(pulse width of a one) - (pulse width of a zero)]/2. Pulse width measured at 50% points.


5. The rise and fall times are using the 20% to 80% thresholds at each output. The output is DC-coupled into 50 Ω to V_{CC}.


- 6. This corresponds to 2.25 dB optical.
- 7. With $V_{IN DIFF} = 1$ Vpp, typical times decrease as $V_{IN DIFF}$ decreases.

8. With V_{IN_DIFF} = 30 mVpp, typical times decrease as V_{IN_DIFF} increases.

MNDSPEED[®]

Figure 1-1. Data Input Requirements

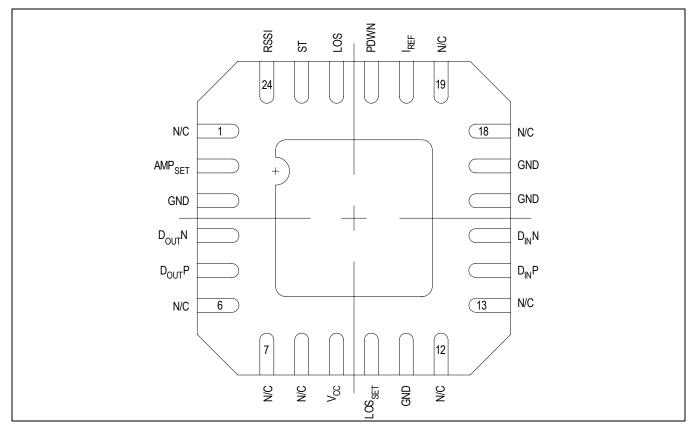
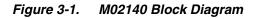
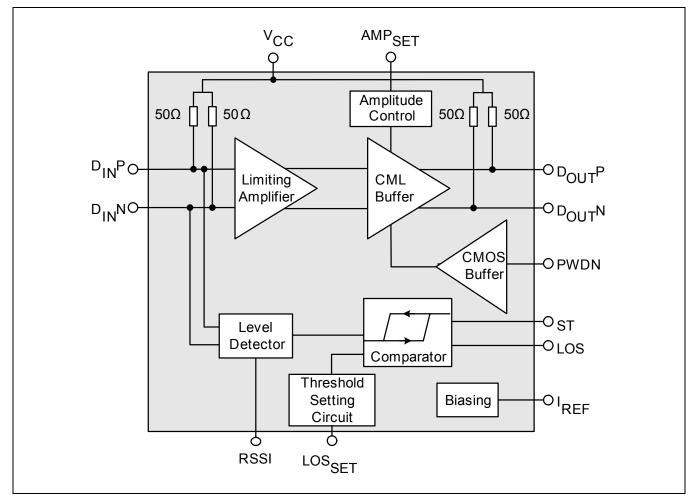


Table 2-1.Pin Descriptions

MLF Pin Number	Name	Function	
1	N/C	Not connected. (Not internally bonded, can be connected to any DC potential including ground)	
2	AMP _{SET}	Enables setting of output voltage swing from 400 mVpp differential to 800 mVpp differential using an external 1% resistor (R _{AMPSET}) to ground	
3	GND	Ground	
4	D _{OUT} N	Inverting differential data output. CML output internally terminated 50 Ω to V _{CC}	
5	D _{OUT} P	Non-inverting differential data output. CML output internally terminated 50 Ω to V_{CC}	
6, 7, 8	N/C	Not connected. (Not internally bonded, can be connected to any DC potential including ground)	
9	V _{CC}	Positive supply	
10	LOS _{SET}	Loss of signal threshold setting input. User programmed with 1% resistor (R _{LOS}) to V _{CC}	
11	GND	Ground	
12, 13	N/C	Not connected. (Not internally bonded, can be connected to any DC potential including ground)	
14	D _{IN} P	Non-inverting data input. Internally terminated 50 Ω to V_{CC}	
15	D _{IN} N	Inverting data input. Internally terminated 50 Ω to V_{CC}	
16, 17	GND	Ground	
18, 19	N/C	Not connected. (Not internally bonded, can be connected to any DC potential including ground)	
20	I _{REF}	Reference current termination. Must be connected to ground through an external 12.1 k Ω , 1% resistor (R _{REF}). This connection generates an on-chip reference current	
21	PWDN	CMOS compatible logic input. When high, the output stage current is switched off, this will make $D_{OUT}P$ and $D_{OUT}N$ both equal to V_{CC} . Data outputs are enabled when PWDN is low or floating	
22	LOS	Loss of Signal Indicator. Asserted when input signal levels falls below threshold established at LOS _{SET} . May be externally connected to the PWDN pin to enable the automatic jam function	
23	ST	Input signal level status. Logical inverse of LOS. This output is LOW when the input signal is below the threshold set at LOS _{SET} . This is an open drain output with an internal 100 k Ω pull-up	
24	RSSI	Received signal strength indicator. The output amplitude is proportional to the received input signal level	
EP	Exposed Paddle	Package backside. Must be conductively connected to ground	

Figure 2-1. 24 Pin (4 x 4mm) MLF top view





3.1 Overview

The M02140 is a high-gain limiting amplifier for applications up to 12.5 Gbps, and incorporates a limiting amplifier, a CML buffer and an input signal level detection circuit. The M02140 also features a fully integrated DC-offset cancellation loop that does not require any external components.

The user is provided with the flexibility to set the output amplitude levels and the signal detect threshold. Optional output buffer disable (squelch/jam) can be implemented using the PWDN input.

3.2 General Description

3.2.1 Inputs

The data inputs are internally biased to V_{CC} via 50 Ω resistors, and may be AC or DC-coupled. Note that if the inputs are AC-coupled, the coupling capacitor should be of sufficient value to pass the lowest frequencies of interest, bearing in mind the number of consecutive identical bits, and the input resistance (It is recommended a capacitor of 2 to 10 nF be used). The coupling capacitor should also be of sufficient quality as to pass the high frequency content of the input data stream.

3.2.2 DC Offset Compensation

The M02140 contains internal DC feedback requiring no external components to remove the effects of DC offsets and to act as a DC auto-zero circuit. This circuit is configured such that the feedback is effective only at frequencies well below the lowest frequency of interest. The low frequency cut off typically is less than 50 kHz.

3.2.3 Outputs

The basic output configuration is as shown in Figure 3-2. The external resistor R_{AMPSET} controls the value of I_{TAIL} . The output swing is linearly proportional to the value of R_{AMPSET} . It is possible to set the output voltage swing linearly between 400 mVpp differential and 800 mVpp differential, when the outputs are properly terminated. See the applications information section for further details on setting the output swing amplitude.

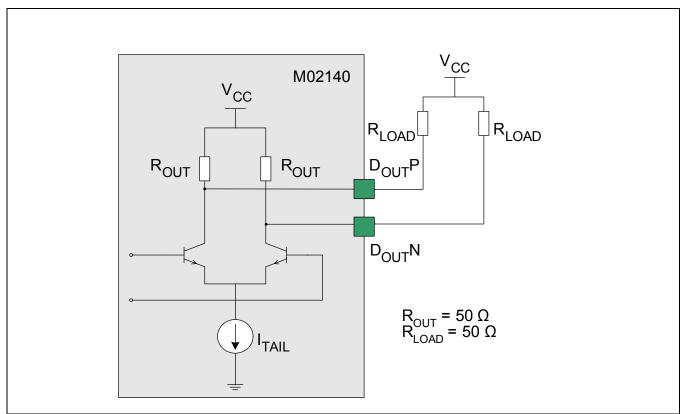
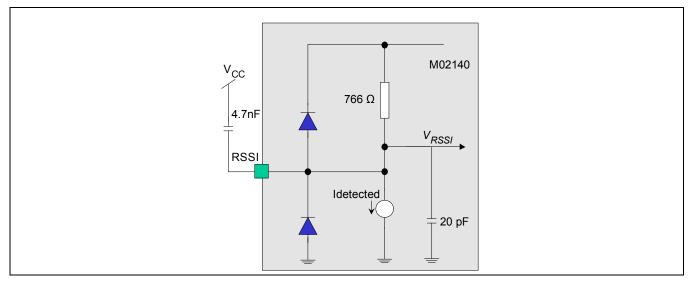
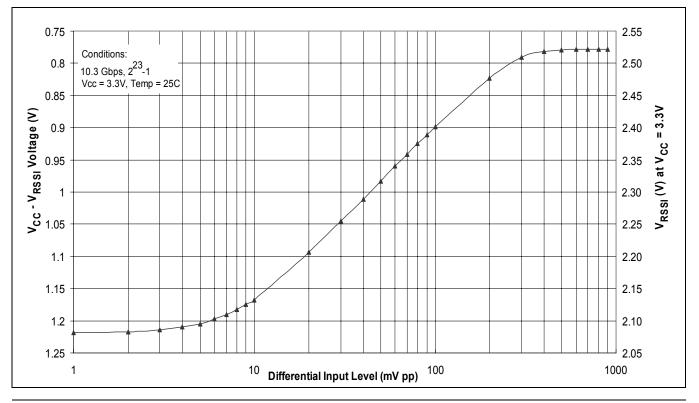


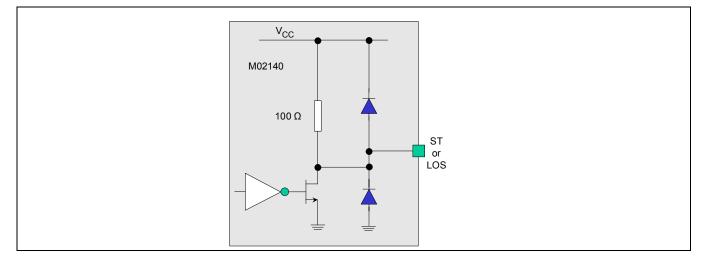
Figure 3-2. Data Outputs

3.2.4 Received Signal Strength Indicator (RSSI)

The RSSI output voltage is proportional to the log of the input signal amplitude as shown in Figure 3-3 (the RSSI output voltage is linearly proportional to the Optical Modulation Amplitude (OMA)). An external 4.7 nF capacitor must be connected from the RSSI output to V_{CC} as shown in Figure 3-4. The capacitor integrates the RSSI output and also sets the loss of signal reaction time. The RSSI voltage is compared with a selectable reference to determine loss of signal as described in the next section.

Figure 3-3. RSSI Output


Figure 3-4. RSSI Transfer Function

3.2.5 Loss of Signal (LOS)

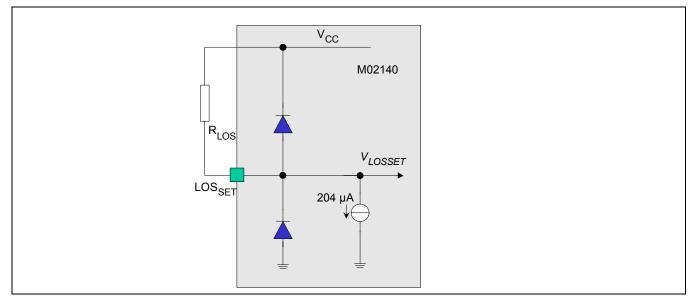

The M02140 features input signal level detection over an extended range. Using an external resistor, R_{LOS} , between pin LOS_{SET} and V_{CC} , the user can program the input signal threshold. The signal detect status is indicated on the LOS and ST open-drain output pins shown in Figure 3-5. These two pins are inverses of each other: the LOS signal is active when the signal is below the threshold value, ST is active when the signal is above the threshold value. The signal detection circuitry has the equivalent of 4.5dB (typical) electrical hysteresis.

Figure 3-5. LOS and ST Outputs

 R_{LOS} establishes a threshold voltage at the LOS_{SET} pin as shown in Figure 3-6. The input signal develops a voltage at the RSSI pin as shown in Figure 3-4. As described in the RSSI section, this voltage is proportional to the input signal peak to peak value. The voltage at LOS_{SET} is internally compared to the voltage at the RSSI (V_(RSSI)) pin. When the voltage at V_(RSSI) is less than V_{(LOSSET}), LOS is asserted (ST de-asserted) and will stay asserted until the input signal level increases by a predefined amount of hysteresis. When the input level increases by more than this hysteresis, LOS is de-asserted (ST asserted). See the applications section for the selection or R_{LOS}.

3.2.6 Squelch Function (Jam) using PWDN

When asserted, the active high power down (PWDN) pin forces the outputs to a high state. This ensures that no data is propagated through the system. The loss of signal detection circuit can be used to automatically force the data outputs to a high state when the input signal falls below the threshold. The function is normally used to allow data to propagate only when the signal is above the user's bit-error-rate requirement. It therefore inhibits the data outputs toggling due to noise when there is no signal present ("squelch").

In order to implement this function, LOS should be connected to the PWDN pin shown in Figure 3-7, thus forcing the data outputs to V_{CC} when the signal falls below the threshold.

Note that LOS_{SET} can be left open if the loss of signal detector function is not required. In this case LOS would be low.

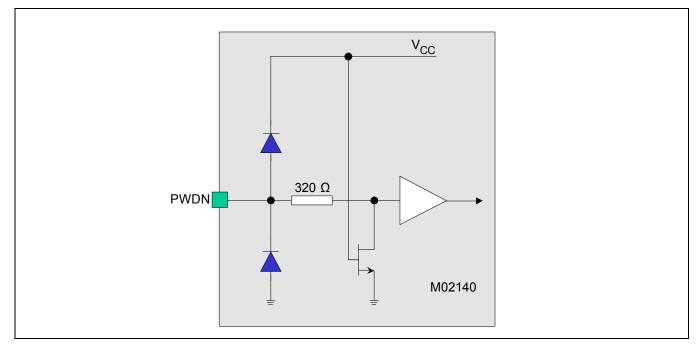
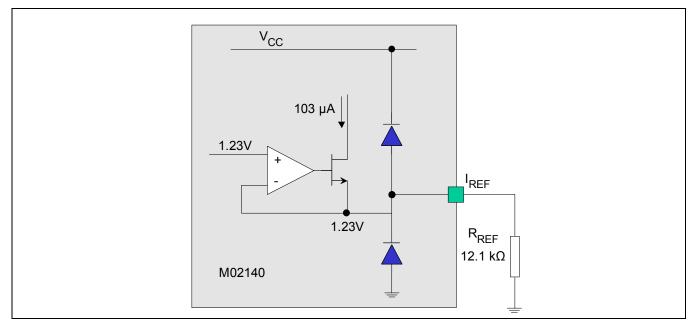



Figure 3-7. Power Down (PWDN)

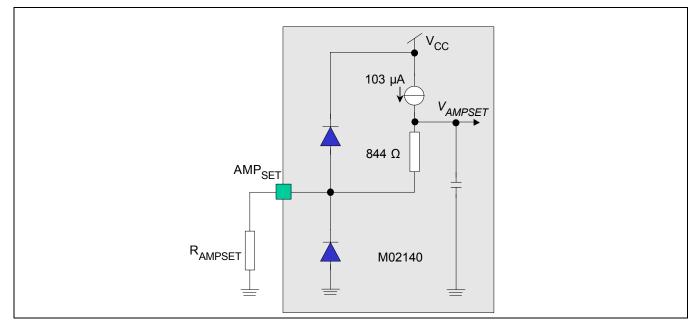
3.2.7 Bias Generation

The M02140 contains an accurate on-chip bias circuit requiring an external 12.1 k Ω 1% resistor, R_{REF} from pin I_{REF} to ground to define an on-chip reference current.

Figure 3-8. Reference Current Connection

4.1 Setting the Output Swing Level

The output circuit is shown in Figure 3-2. It is basically a differential pair with a tail current of I_{TAIL} . The load of the differential pair is formed by the parallel combination of R_{OUT} and R_{LOAD} for high frequencies where the output AC-coupling capacitor can be considered as a short circuit (50 || 50 = 25 Ω). The single-ended output voltage swing is given by EQ.1:


 $V_{PP-SE} = I_{TAIL} x (R_{OUT} \parallel R_{LOAD})$

The required minimum voltage swing sets I_{TAIL} and I_{TAIL} determines the output power consumption. The minimum voltage swing depends on the application. Therefore, M02140 provides the user the flexibility to optimize the voltage swing and the output power consumption in his own application by setting I_{TAIL} using an external resistor (R_{AMPSET}) shown in Figure 4-1. To select the required swing, use the following equation (EQ.2):

$$I_{TAII} = 8 \text{ mA} + (R_{AMPSET} \times 9.0 \times 10^{-3}) \text{ mA}$$

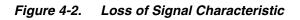
EQ. 2

EQ. 1

Figure 4-1. AMPset

The minimum I_{TAIL} is 8mA and occurs when the AMPSET pin is directly connected to ground. The resulting voltage swing is 200 mVpp, single-ended (= 8 mA x 25 Ω). This is sufficient for most applications. If it is necessary, the voltage swing can be increased at the expense of the power consumption by connecting an external resistor R_{AMPSET} between the AMP_{SET} pin and ground. The value of R_{AMPSET} can be calculated from EQ.2. A resistor of 887 Ω results in 16 mA tail current which delivers a voltage swing of 400 mVpp, single-ended (16 mA x 25 Ω).

4.2 Setting the Signal Detect Level


Using Figure 4-2, the value for R_{LOS} is chosen to set the LOS threshold at the desired value. The resulting hysteresis is also shown in Figure 4-2.

Three example R_{LOS} resistor values are given in Table 7.

From Figure 4-2, it is apparent that small variations in R_{LOS} cause significant variation in the LOS threshold level, particularly for low input signal levels. This is because of the logarithmic relationship between the RSSI voltage and the input signal level. It is recommended that a 1% resistor be used for R_{LOS} and that allowance is provided for LOS variation, particularly when the LOS threshold is near the sensitivity limit of the M02140.

Table 4-1.RLOS Resistor Values

LOS Assert Threshold VIN (mV pp) differential	R _{LOS} (kΩ) (nearest 1% value)
10	4.99
20	4.64
50	4.22
75	4.02

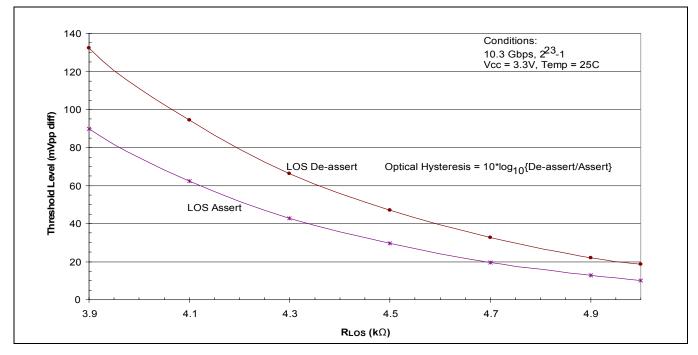
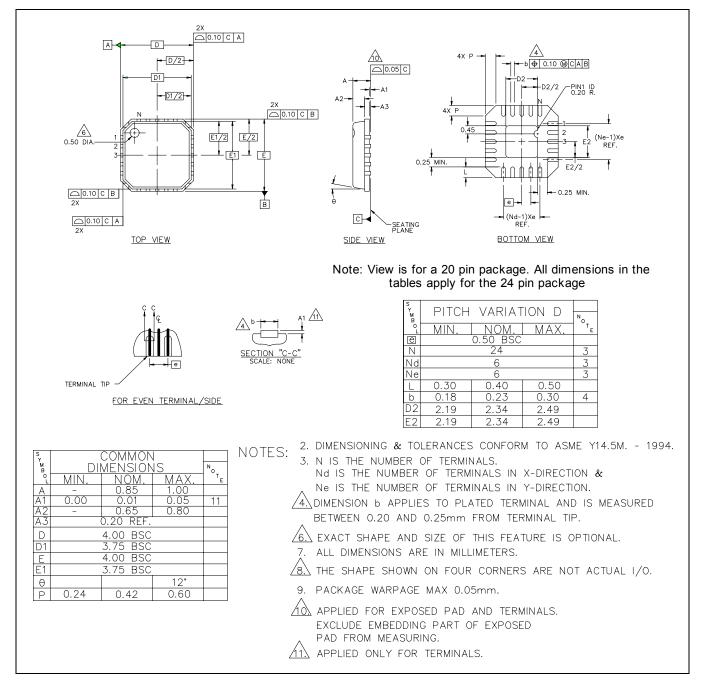



Figure 5-1. Package Information

MNDSPEED[®]

© 2004, Mindspeed TechnologiesTM, Inc. All rights reserved.

Information in this document is provided in connection with Mindspeed TechnologiesTM ("MindspeedTM") products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Except as provided in Mindspeed's Terms and Conditions of Sale for such products or in any separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WAR-RANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLEC-TUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETE-NESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSE-QUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale. www.mindspeed.com

General Information: U.S. and Canada: (800) 854-8099 International: (949) 483-6996 Headquarters - Newport Beach 4000 MacArthur Blvd., East Tower Newport Beach, CA. 92660

